13 research outputs found

    Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications

    Get PDF
    The characterization of shallow soil moisture spatial variability at the large scale is a crucial issue in many research studies and fields of application ranging from agriculture and geology to civil and environmental engineering. In this framework, this work contributes to the research in the area of pavement engineering for preventing damages and planning effective management. High spatial variations of subsurface water content can lead to unexpected damage of the load-bearing layers; accordingly, both safety and operability of roads become lower, thereby affecting an increase in expected accidents. A pulsed ground-penetrating radar system with ground-coupled antennas, i.e., 600-MHz and 1600-MHz center frequencies of investigation, was used to collect data in a 16 m × 16 m study site in the Po Valley area in northern Italy. Two ground-penetrating radar techniques were employed to non-destructively retrieve the subsurface moisture spatial profile. The first technique is based on the evalu¬ation of the dielectric permittivity from the attenuation of signal amplitudes. Therefore, dielectrics were converted into moisture values using soil-specific coefficients from Topp’s relationship. Ground-penetrating-radar-derived values of soil moisture were then compared with measurements from eight capacitance probes. The second technique is based on the Rayleigh scattering of the signal from the Fresnel theory, wherein the shifts of the peaks of frequency spectra are assumed comprehensive indi¬cators for characterizing the spatial variability of moisture. Both ground-penetrating radar methods have shown great promise for mapping the spatial variability of soil moisture at the large scale

    A non-invasive approach to monitor variability of soil water content with electromagnetic methods

    Get PDF
    An accurate and high-resolution description of the spatial variability of soil water content at the field scale and the distribution of water in the unsaturated zone requires a large number of measurements. Financial and time constraints limit the numbers of measurement locations; thus the standard approach for monitoring could lead to a large degree of uncertainty in spatial predictions. We test in a parcel of bare soil an alternative approach based on ground-based geophysical techniques, by comparing the monitoring of the soil water content obtained from the Electrical Resisitivity Imaging and the Ground Penetrating Radar with the variability maps estimated from the interpolation of soil water contents measured in different locations with capacitance probes. The agreement is good and the integration of the techniques is promising

    Assessing the Perspectives of Ground Penetrating Radar for Precision Farming

    No full text
    The United Nations 2030 Agenda for Sustainable Development highlighted the importance of adopting sustainable agricultural practices to mitigate the threat posed by climate change to food systems around the world, to provide wise water management and to restore degraded lands. At the same time, it suggested the benefits and advantages brought by the use of near-surface geophysical measurements to assist precision farming, in particular providing information on soil variability at both vertical and horizontal scales. Among such survey methodologies, Ground Penetrating Radar has demonstrated its effectiveness in soil characterisation as a consequence of its sensitivity to variations in soil electrical properties and of its additional capability of investigating subsurface stratification. The aim of this contribution is to provide a comprehensive review of the current use of the GPR technique within the domain of precision irrigation, and specifically of its capacity to provide detailed information on the within-field spatial variability of the textural, structural and hydrological soil properties, which are needed to optimize irrigation management, adopting a variable-rate approach to preserve water resources while maintaining or improving crop yields and their quality. For each soil property, the review analyses the commonly adopted operational and data processing approaches, highlighting advantages and limitations

    Crop Row Detection through UAV Surveys to Optimize On-Farm Irrigation Management

    No full text
    Climate change and competition among water users are increasingly leading to a reduction of water availability for irrigation; at the same time, traditionally non-irrigated crops require irrigation to achieve high quality standards. In the context of precision agriculture, particular attention is given to the optimization of on-farm irrigation management, based on the knowledge of within-field variability of crop and soil properties, to increase crop yield quality and ensure an efficient water use. Unmanned Aerial Vehicle (UAV) imagery is used in precision agriculture to monitor crop variability, but in the case of row-crops, image post-processing is required to separate crop rows from soil background and weeds. This study focuses on the crop row detection and extraction from images acquired through a UAV during the cropping season of 2018. Thresholding algorithms, classification algorithms, and Bayesian segmentation are tested and compared on three different crop types, namely grapevine, pear, and tomato, for analyzing the suitability of these methods with respect to the characteristics of each crop. The obtained results are promising, with overall accuracy greater than 90% and producer’s accuracy over 85% for the class “crop canopy”. The methods’ performances vary according to the crop types, input data, and parameters used. Some important outcomes can be pointed out from our study: NIR information does not give any particular added value, and RGB sensors should be preferred to identify crop rows; the presence of shadows in the inter-row distances may affect crop detection on vineyards. Finally, the best methodologies to be adopted for practical applications are discussed

    Assessing the Effectiveness of Variable-Rate Drip Irrigation on Water Use Efficiency in a Vineyard in Northern Italy

    No full text
    Although many studies in the literature illustrate the numerous devices and methodologies nowadays existing for assessing the spatial variability within agricultural fields, and indicate the potential for variable-rate irrigation (VRI) in vineyards, only very few works deal with the implementation of VRI systems to manage such heterogeneity, and these studies are usually conducted in experimental fields for research aims. In this study, a VR drip irrigation system was designed for a 1-ha productive vineyard in Northern Italy and managed during the agricultural season 2018, to demonstrate feasibility and effectiveness of a water supply differentiated according to the spatial variability detected in field. Electrical resistivity maps obtained by means of an electro-magnetic induction sensor were used to detect four homogeneous zones with similar soil properties. In each zone, a soil profile was opened, and soil samples were taken and analyzed in laboratory. Two irrigation management zones (MZs) were identified by grouping homogeneous zones on the basis of their hydrological properties, and an irrigation prescription map was built consistently with the total available water (TAW) content in the root zone of the two MZs. The designed drip irrigation system consisted of three independent sectors: the first two supplied water to the two MZs, while the third sector (reference sector) was managed following the farmer’s habits. During the season, irrigation in the first two sectors was fine-tuned using information provided by soil moisture probes installed in each sector. Results showed a reduction of water use by 18% compared to the ‘reference’ sector without losses in yield and product quality, and a grape’s maturation more homogeneous in time
    corecore